
CertiK Assessed on May 8th, 2025

82.com
Security Assessment

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

2 Centralization 2 Acknowledged
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

1 Major 1 Resolved
Major risks may include logical errors that, under

specific circumstances, could result in fund losses or

loss of project control.

6 Medium 1 Resolved, 5 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

SUMMARY 82.COM

CertiK Assessed on May 8th, 2025

82.com

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

NFT

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 05/08/2025

KEY COMPONENTS

N/A

CODEBASE
base

update_20250502

View All in Codebase Page

COMMITS
5a43734e468fe7c70a6700c0531a8b79f705e4de

22571719e7b3ddfb92a9367af1bdb72352e7e4c4

View All in Codebase Page

Contract upgradeability Privileged role can mint tokens Fees are unbounded

Has blacklist/whitelist

31
Total Findings

11
Resolved

1
Partially Resolved

19
Acknowledged

0
Declined

https://github.com/octopus-net/octopus-contract/tree/5a43734e468fe7c70a6700c0531a8b79f705e4de
https://github.com/octopus-net/octopus-contract/commit/22571719e7b3ddfb92a9367af1bdb72352e7e4c4
https://github.com/octopus-net/octopus-contract/tree/5a43734e468fe7c70a6700c0531a8b79f705e4de
https://github.com/octopus-net/octopus-contract/commit/22571719e7b3ddfb92a9367af1bdb72352e7e4c4

14 Minor 7 Resolved, 1 Partially Resolved, 6 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

7 Informational 1 Resolved, 6 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY 82.COM

TABLE OF CONTENTS 82.COM

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

COI-05 : Unrestricted Public Mint Function Allows Unauthorized Token Creation

COI-06 : Centralized Control of Contract Upgrade

COI-07 : Centralization Risks

COI-09 : Potential Front Run in `NFTOfferMarketLogic`

COI-08 : Function Calls User-Provided Addresses With No Access Control Modifier

COI-10 : Lack of Storage Gap Or NameSpaced Storage Layout in Upgradeable Contract

COI-11 : Users are forced to approve for all

COI-12 : Preemptive Freezing of Non-Existent Tokens Can Block Future Minting

COI-13 : Ambiguous ERC20 Transfers to Same Recipient May Indicate Misconfigured Fee Logic

COI-14 : Insufficient Safeguards Allow Arbitrary Calls Despite Signature Validation

COI-15 : Self-Administered Role Allows for Complete Role Takeover

COI-16 : Missing Zero Address Validation

COI-17 : Incorrect Setup of EIP712 Domain Separator

COI-18 : `_setRoleAdmin` to `DEFAULT_ADMIN_ROLE` Is Redundant

COI-19 : Potential Reentrancy Attack (Out-of-Order Events)

COI-20 : `_nextTokenId` Reflects the Current Token ID

COI-21 : Missing Input Validation in `viewRoleMember()` Leads to Silent or Unexpected Failures

COI-23 : Unsafe Unlimited Token Approvals and Operator Permissions Granted to Transfer Agent

COI-24 : Unbounded Token Whitelist May Lead to Gas Exhaustion

COI-25 : Stale Token Type Mapping Remains After Token Removal

COI-26 : Uninitialized Critical Configuration Variables May Lead to Undefined Behavior

COI-27 : Redundant Check

COI-28 : Potential CrossFunction Reentrancy in `NFTOfferMarketLogic`

COI-36 : Initialize State Variable in Constructor or Declaration in Upgradeable Contract

COI-29 : Inconsistent Solidity Versions

TABLE OF CONTENTS 82.COM

COI-30 : Potential Reentrancy Attack (In Case Of Unlimited Gas)

COI-31 : Unused state variable

COI-32 : Local Variable Shadowing

COI-33 : Too many digits

COI-34 : Missing Emit Events

COI-35 : Information on Upgrade Handling

Optimizations

COI-01 : Redundant Code Components

COI-02 : Redundant `burn()` Override

COI-03 : Unused Declarations Increase Contract Size and Reduce Clarity

COI-04 : Redundant Length Checks Before Looping Over Token Arrays

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS 82.COM

CODEBASE 82.COM

Repository

base

update_20250502

Commit

5a43734e468fe7c70a6700c0531a8b79f705e4de

22571719e7b3ddfb92a9367af1bdb72352e7e4c4

CODEBASE 82.COM

https://github.com/octopus-net/octopus-contract/tree/5a43734e468fe7c70a6700c0531a8b79f705e4de
https://github.com/octopus-net/octopus-contract/commit/22571719e7b3ddfb92a9367af1bdb72352e7e4c4
https://github.com/octopus-net/octopus-contract/tree/5a43734e468fe7c70a6700c0531a8b79f705e4de
https://github.com/octopus-net/octopus-contract/commit/22571719e7b3ddfb92a9367af1bdb72352e7e4c4

AUDIT SCOPE 82.COM

13 files audited 13 files with Acknowledged findings

ID Repo File SHA256 Checksum

DNF

octopus-

net/octopus-

contract

domainNft/DomainNFTLogic.sol ec38703e68abea5e60d4b4b3e5ac4ee9f0658

eed2e5f97572b1c87c443d61ebc

DNT

octopus-

net/octopus-

contract

domainNft/DomainNFTProxy.sol
3f01c20f88b6dddc19ec8125d171690b88f1b6

541d7b1a251c9bfddfd13d7ccb

TWM

octopus-

net/octopus-

contract

modules/TokenWithdrawModule.sol
3e4630b8e7d4269391b0fdb91362493f34e1b

475afc8d6d1cbef31327d30d9e7

IPC

octopus-

net/octopus-

contract

safe/IProxyCreationCallback.sol cacbc0044b6cbd89caa1c16b185fc662f066a8

5798532ee735835e8c044e9bf3

SAE

octopus-

net/octopus-

contract

safe/Safe.sol b7c49796ce8e61ae1ae740dd5ffcb56d3eda8b

685d5f9f9fe8488a6391dfa1b9

SPB

octopus-

net/octopus-

contract

safe/SafeProxy.sol
4c23eec50cbf85dd2ddc3b7eb9efd85430bc47

c9ad79dc6b98833603fbe09cb0

SPF

octopus-

net/octopus-

contract

safe/SafeProxyFactory.sol
8aa936ea0d16eb96c7cd63398697064836f17

37d2fc10d5f012eaa0e91b3f8d9

SML

octopus-

net/octopus-

contract

setting/SettingManagerLogic.sol
2e18cfb897efc31437badb14b54064c40a650

58246cf95786281195daaef025d

SMP

octopus-

net/octopus-

contract

setting/SettingManagerProxy.sol 375fe9a1b75f9186b2a09c75a409d6152f529b

860a4748829edc2dfe25493d18

AUDIT SCOPE 82.COM

ID Repo File SHA256 Checksum

NFT

octopus-

net/octopus-

contract

trading/NFTOfferMarketLogic.sol
4bac637a3ba739d348fadc7e291e141a56bcd

8dfcb30e7213dde6093dd867f7e

NFO

octopus-

net/octopus-

contract

trading/NFTOfferMarketProxy.sol
86d178c8167868cda8fc607645e6742772c89

e1eca6f233596ed61eb66cd366b

TAL

octopus-

net/octopus-

contract

transfer/TransferAgentLogic.sol
40b7ba2ffa1f0e7c666e27d21bfd7759a9e535

7d96654f69a78ace7a5127e033

TAP

octopus-

net/octopus-

contract

transfer/TransferAgentProxy.sol 5daa411cce3b4e792a9fe175d8659694c3f47

d0fe0d01e9a32dc525c64eb3cf7

AUDIT SCOPE 82.COM

APPROACH & METHODS 82.COM

This report has been prepared for 82.com to discover issues and vulnerabilities in the source code of the 82.com project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS 82.COM

FINDINGS 82.COM

This report has been prepared to discover issues and vulnerabilities for 82.com. Through this audit, we have uncovered 31

issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

COI-05
Unrestricted Public Mint Function Allows

Unauthorized Token Creation
Access Control Critical Resolved

COI-06 Centralized Control Of Contract Upgrade Centralization Centralization Acknowledged

COI-07 Centralization Risks Centralization Centralization Acknowledged

COI-09
Potential Front Run In

NFTOfferMarketLogic
Concurrency Major Resolved

COI-08
Function Calls User-Provided Addresses

With No Access Control Modifier
Access Control Medium Acknowledged

COI-10
Lack Of Storage Gap Or NameSpaced

Storage Layout In Upgradeable Contract
Design Issue Medium Acknowledged

COI-11 Users Are Forced To Approve For All Volatile Code Medium Acknowledged

COI-12
Preemptive Freezing Of Non-Existent

Tokens Can Block Future Minting
Logical Issue Medium Resolved

COI-13

Ambiguous ERC20 Transfers To Same

Recipient May Indicate Misconfigured Fee

Logic

Logical Issue Medium Acknowledged

COI-14
Insufficient Safeguards Allow Arbitrary Calls

Despite Signature Validation
Logical Issue Medium Acknowledged

FINDINGS 82.COM

31
Total Findings

1
Critical

2
Centralization

1
Major

6
Medium

14
Minor

7
Informational

ID Title Category Severity Status

COI-15
Self-Administered Role Allows For

Complete Role Takeover
Design Issue Minor Acknowledged

COI-16 Missing Zero Address Validation Volatile Code Minor Acknowledged

COI-17
Incorrect Setup Of EIP712 Domain

Separator
Design Issue Minor Acknowledged

COI-18
_setRoleAdmin To DEFAULT_ADMIN_ROLE

Is Redundant
Logical Issue Minor Resolved

COI-19
Potential Reentrancy Attack (Out-Of-Order

Events)
Concurrency Minor Acknowledged

COI-20
_nextTokenId Reflects The Current Token

ID
Logical Issue Minor Resolved

COI-21

Missing Input Validation In

viewRoleMember() Leads To Silent Or

Unexpected Failures

Logical Issue Minor Partially Resolved

COI-23

Unsafe Unlimited Token Approvals And

Operator Permissions Granted To Transfer

Agent

Design Issue Minor Acknowledged

COI-24
Unbounded Token Whitelist May Lead To

Gas Exhaustion

Denial of

Service
Minor Acknowledged

COI-25
Stale Token Type Mapping Remains After

Token Removal
Logical Issue Minor Resolved

COI-26
Uninitialized Critical Configuration Variables

May Lead To Undefined Behavior
Logical Issue Minor Resolved

COI-27 Redundant Check Volatile Code Minor Resolved

COI-28
Potential CrossFunction Reentrancy In

NFTOfferMarketLogic
Concurrency Minor Resolved

COI-36
Initialize State Variable In Constructor Or

Declaration In Upgradeable Contract
Logical Issue Minor Resolved

FINDINGS 82.COM

ID Title Category Severity Status

COI-29 Inconsistent Solidity Versions
Language

Version
Informational Acknowledged

COI-30
Potential Reentrancy Attack (In Case Of

Unlimited Gas)
Concurrency Informational Acknowledged

COI-31 Unused State Variable Coding Issue Informational Acknowledged

COI-32 Local Variable Shadowing Coding Style Informational Acknowledged

COI-33 Too Many Digits Magic Numbers Informational Acknowledged

COI-34 Missing Emit Events Coding Style Informational Acknowledged

COI-35 Information On Upgrade Handling Design Issue Informational Resolved

FINDINGS 82.COM

COI-05 UNRESTRICTED PUBLIC MINT FUNCTION ALLOWS
UNAUTHORIZED TOKEN CREATION

Category Severity Location Status

Access Control Critical domainNft/DomainNFTLogic.sol (base): 59~64, 69~74 Resolved

Description

Anyone can call the mint() function to create new tokens and assign them to any address, as there are no access controls

or restrictions in place to limit who can invoke it. This allows unauthorized users to arbitrarily mint tokens, potentially leading

to inflation, abuse, or loss of trust in the system.

Recommendation

We recommend adding proper access control, such as onlyOwner() or role-based modifiers, to restrict who can call the

mint function.

Alleviation

[82.com, 04/23/2025]: The unrestricted mint vulnerability (COI-5) has been resolved in commit b01d571 through

implementation of role-based access control, effectively restricting minting privileges to authorized addresses only.

COI-05 82.COM

https://github.com/octopus-net/octopus-contract/commit/b01d571d7549ac99d832c7f78f3cf39bc0ab9f01

COI-06 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization Centralization

domainNft/DomainNFTLogic.sol (base): 11; settin

g/SettingManagerLogic.sol (base): 8; trading/NFTO

fferMarketLogic.sol (base): 218; transfer/TransferA

gentLogic.sol (base): 9

Acknowledged

Description

Upgrade authorization is restricted to roles such as ROLE_ADMIN , DEFAULT_ADMIN_ROLE , or onlyOwner , granting a single

account or a small group full control over replacing the contract's implementation. This introduces a centralization risk, as any

compromise or misuse of these privileged roles can lead to arbitrary logic being deployed, potentially enabling fund theft,

data corruption, or bypassing critical security checks. Without additional safeguards like multi-signature governance,

timelocks, or community oversight, the upgrade mechanism becomes a single point of failure.

Risk Note

Important Note: Certain identification procedures were attempted to be applied to the project team in order to better

understand the centralization situation and potential risks of the project. We strongly advise end users to conduct further

research and exercise due diligence before engaging with the project given the centralization related risks. It is crucial for end

users to independently verify and assess all available information

Recommendation

We recommend that the team make efforts to restrict access to the admin of the proxy contract. A strategy of combining a

time-lock and a multi-signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key

compromise. In addition, the team should be transparent and notify the community in advance whenever they plan to migrate

to a new implementation contract.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

Short Term:

A combination of a time-lock and a multi signature (⅔, ⅗) wallet mitigate the risk by delaying the sensitive operation and

avoiding a single point of key management failure.

A time-lock with reasonable latency, such as 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

COI-06 82.COM

AND

A medium/blog link for sharing the time-lock contract and multi-signers addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Long Term:

A combination of a time-lock on the contract upgrade operation and a DAO for controlling the upgrade operation mitigate the

contract upgrade risk by applying transparency and decentralization.

A time-lock with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

A medium/blog link for sharing the time-lock contract, multi-signers addresses, and DAO information with the

community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

Renouncing ownership of the admin account or removing the upgrade functionality can fully resolve the risk.

Renounce the ownership and never claim back the privileged role;

OR

Remove the risky functionality.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

COI-06 82.COM

Alleviation

[82.com, 04/23/2025]: We acknowledge the centralization concerns regarding contract upgrade mechanisms. This finding

remains under active internal evaluation as we assess the appropriate balance between operational efficiency and

decentralization. Any potential adjustments will be determined through our formal governance process.

COI-06 82.COM

COI-07 CENTRALIZATION RISKS

Category Severity Location Status

Centralization Centralization

domainNft/DomainNFTLogic.sol (base): 47, 48, 53,

58; safe/Safe.sol (base): 104; setting/SettingManag

erLogic.sol (base): 62, 81, 91, 110, 115, 129, 133, 13

7, 141, 145, 149; trading/NFTOfferMarketLogic.sol

(base): 33, 36, 229, 264, 272; transfer/TransferAgen

tLogic.sol (base): 33, 34, 38, 55, 60

Acknowledged

Description

Several contracts grant powerful privileges to specific roles or addresses. If these roles are compromised, an attacker may

gain control over critical operations.

DomainNFTLogic

ROLE_ADMIN: Authorize upgrades

ROLE_ADMIN: Set base URI

ROLE_FROZEN: Freeze or unfreeze specific NFT token IDs

SafeV2

_owners: Verify multiple signatures

SettingManagerLogic

DEFAULT_ADMIN_ROLE: Authorize contract upgrades

FEE_MANAGER_ROLE: Set transaction fee receiver

FEE_MANAGER_ROLE: Set withdrawal fee rate and receiver

FEE_MANAGER_ROLE: Set NFT creator and owner royalty rates

FEE_MANAGER_ROLE: Set transaction fee rate

SAFE_MANAGER_ROLE: Add or remove safe proxy addresses

TOKEN_MANAGER_ROLE: Add or remove whitelisted tokens

MultiTokenManager

_owner: Set settingManager address

COI-07 82.COM

_owner: Set transferAgent address

NFTOfferMarketLogic

_owner: Cancel sell and buy orders

_owner: Authorize contract upgrade

TransferAgentLogic

_owner: Add or remove whitelisted exchanges

_owner: Authorize upgrade to new implementation

_whitelisted: Transfer ERC721 and ERC20 tokens

_whitelisted: Remove whitelisted exchange addresses

Risk Note

Important Note: Certain identification procedures were attempted to be applied to the project team in order to better

understand the centralization situation and potential risks of the project. We strongly advise end users to conduct further

research and exercise due diligence before engaging with the project given the centralization related risks. It is crucial for end

users to independently verify and assess all available information

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

COI-07 82.COM

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[82.com, 04/23/2025]: We acknowledge the centralization risks identified in COI-7. While maintaining the current privileged

role structure for operational continuity, we are actively evaluating decentralized governance models (including DAO

integration and multi-sig implementations) as part of our long-term roadmap to progressively reduce single points of failure in

the protocol's administration.

COI-07 82.COM

COI-09 POTENTIAL FRONT RUN IN NFTOfferMarketLogic

Category Severity Location Status

Concurrency Major
trading/NFTOfferMarketLogic.sol (base): 150~151, 158~159, 166~167, 1

75~176
Resolved

Description

The contracts in NFTOfferMarketLogic allow for the creation of buy and sell orders at a specific price. However, this price

can be updated without modifying the order hash.

This could lead to an exploit where a buyer or a seller front runs the acceptBuyOrder() or acceptSellOrder() call,

respectively, by a seller to modify the price of the related NFT.

Scenario

Buy Order

1. Initial State: Bob owns NFT #42.

2. Alice’s Offer: Alice calls createBuyOrder() for this specific token and a price of 100. The contract computes an

order hash (e.g. 0xABC123) based on several parameters, but not the price .

3. Bob’s Acceptance: Bob invokes acceptBuyOrder() to sell his NFT under the terms Alice originally offered

(price = 100).

4. Front‑Run by Alice: Before Bob’s transaction is mined, Alice front‑runs by calling updateBuyOrder() with the

same parameters as before, except the price is modified to equal 1. This reuses the same order hash 0xABC123

because the hash omits the price field.

5. Order Resolution: When Bob’s acceptBuyOrder finally executes, the contract looks up order 0xABC123 and finds

the updated price: 1, not 100.

6. Adverse Outcome: Bob unintentionally transfers his NFT for just 1 token instead of 100.

Sell Order

1. Bob’s Setup: To smoothly purchase NFTs, Bob grants the marketplace contract a large ERC‑20 allowance (e.g.

10 000 tokens).

2. Alice’s Sell Order: Alice calls createSellOrder() for NFT #43 and a price of 100. The contract computes an order

hash (e.g. 0xABC123) from parameters excluding the price .

3. Bob’s Acceptance: Bob invokes acceptSellOrder() expecting to pay 100 tokens in return for NFT #43.

4. Front‑Run by Alice: Before Bob’s tx is mined, Alice front‑runs by calling updateSellOrder() with the same

parameters as before, except the price is modified to equal 10 000. Since the hash omits price , it remains

COI-09 82.COM

0xABC123 .

5. Order Resolution: When Bob’s pending acceptSellOrder() executes, the contract retrieves order 0xABC123

and now sees the updated price of 10 000.

6. Adverse Outcome: Bob unintentionally spends his entire allowance (10 000 tokens) instead of the intended 100.

Recommendation

We recommend including all sensible informations in the hash of an order to prevent exploiting it through an update.

Alleviation

[82.com, 04/23/2025]: We acknowledge this as a critical front-running vulnerability. Our implemented solution (commit

9b4f623) introduces price tolerance parameters in order execution functions - transactions now automatically revert if

execution price exceeds the user-specified acceptable range, effectively mitigating this attack vector while maintaining

market functionality.

COI-09 82.COM

https://github.com/octopus-net/octopus-contract/commit/9b4f6230be3169b9911fdd105104490ecaa4dcd0

COI-08 FUNCTION CALLS USER-PROVIDED ADDRESSES WITH NO
ACCESS CONTROL MODIFIER

Category Severity Location Status

Access Control Medium setting/SettingManagerLogic.sol (base): 70 Acknowledged

Description

Calling a user provided address is dangerous, especially in a public function with no access control restriction. An attacker

could deploy a malicious contract and use the vulnerable function to trigger a call to the malicious contract, potentially

stealing user funds or causing other serious damages.

Recommendation

We recommend several different types of mitigations, depending on the context:

1. Remove the vulnerable function, or restrict what addresses can be called from it.

2. Include access control mechanisms, whether it be through making the function internal or restricting which

contracts can call this function.

Alleviation

[82.com, 04/23/2025]: We acknowledge the security considerations regarding arbitrary contract calls. While we currently lack

an on-chain mechanism to verify contract maliciousness, this function is intentionally restricted to admin-only access. We're

maintaining the current implementation based on our trust model for privileged roles, while continuing to explore more robust

verification solutions for future iterations.

COI-08 82.COM

COI-10 LACK OF STORAGE GAP OR NAMESPACED STORAGE
LAYOUT IN UPGRADEABLE CONTRACT

Category Severity Location Status

Design Issue Medium trading/NFTOfferMarketLogic.sol (base): 16, 72 Acknowledged

Description

When updating upgradeable smart contracts for new features or bug fixes, keeping the state variables' declaration order

unchanged is essential to avoid storage layout issues.

A practical solution is to include unused state variables or explicitly named storage gaps (like __gap) in the base contracts.

This foresight allows reserved slots for future use, ensuring that any additions to the contract's state won't disrupt the storage

pattern of derived contracts or the compatibility with previously deployed versions. After ERC-7201 , it is also possible to

place all storage variables of a contract into one or more structs like Namespaced Storage Layout .

The problem of "Lack of Storage Gap Or NameSpaced Storage Layout in Upgradeable Contract" occurs when these

storage gaps are not incorporated into the base contract's logic nor the base contract defines the namespace

storage layout. As a result, if new state variables are added to the base contract, they might overwrite existing variables in

the child contracts due to storage slot collisions.

In the current contract, the contract allows for future upgrades and is also inherited by other contracts. However,

the storage gap is missing for the the current contract, nor is the namespaced storage layout used.

For detailed guidelines and best practices, refer to the following OpenZeppelin documentation:

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps

Recommendation

To mitigate this issue:

1. For enhanced flexibility in future upgrades of the logic contract, it is prudent to reserve a storage gap of an

appropriate size in the base contract. This is achieved by declaring a fixed-size array, typically of uint256 elements,

each occupying a 32-byte slot, in the base contract. Label this array with the identifier __gap or any name prefixed

with __gap_ to indicate its purpose as a reserved space clearly.

2. it is also possible by placing all storage variables of a contract into one or more structs like Namespaced Storage

Layout .

More detailed info :

COI-10 82.COM

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

Alleviation

[82.com, 04/23/2025]: We acknowledge the importance of storage gaps for upgradeable contracts. This will be

systematically implemented across all upgradeable contracts in our next development cycle to ensure forward compatibility

and prevent storage collisions during future upgrades.

COI-10 82.COM

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

COI-11 USERS ARE FORCED TO APPROVE FOR ALL

Category Severity Location Status

Volatile Code Medium trading/NFTOfferMarketLogic.sol (base): 90~91 Acknowledged

Description

The function '_validateExternalConfig()' requires the ERC721 owner/operator to approve the current contract in order to

transfer the specific token from the token owner. However, it must be approved for all, which is a level of approval that many

users are not comfortable with. This is because it uses isApprovedForAll() to check validation. Thus, if only a single token

is approved, the user will not be able to invoke the function, which is clearly unreasonable.

Recommendation

We recommend that users should be allowed to approve only a single token.

Alleviation

[82.com, 04/23/2025]: We recognize the security considerations regarding forced token approvals. While maintaining the

current implementation for user experience optimization (as with COI-23), we've documented this as a potential future

enhancement pending further evaluation of security/usability tradeoffs.

COI-11 82.COM

COI-12 PREEMPTIVE FREEZING OF NON-EXISTENT TOKENS CAN
BLOCK FUTURE MINTING

Category Severity Location Status

Logical Issue Medium domainNft/DomainNFTLogic.sol (base): 48~52, 59~64, 95 Resolved

Description

Tokens that have not yet been minted can be marked as frozen through the frozenTokenId() function, allowing anyone

with the appropriate role to preemptively freeze future token IDs. This could inadvertently or maliciously block the minting of

new tokens, as frozen tokens trigger a revert during the minting process due to checks in the _update() function,

potentially halting the contract's core functionality.

Recommendation

We recommend adding a check to ensure that only existing or already minted token IDs can be frozen to prevent disruption

of the minting process.

Alleviation

[82.com, 04/23/2025]: We acknowledge this design oversight where the system previously trusted admin inputs to only

reference minted NFT IDs. The vulnerability has been patched in commit 0fcc1e1 by implementing validation to prevent

freezing unminted tokens, enhancing both security and protocol integrity.

COI-12 82.COM

https://github.com/octopus-net/octopus-contract/commit/0fcc1e164f280e33fa6c63669469e0b867aca44e

COI-13 AMBIGUOUS ERC20 TRANSFERS TO SAME RECIPIENT
MAY INDICATE MISCONFIGURED FEE LOGIC

Category Severity Location Status

Logical Issue Medium trading/NFTOfferMarketLogic.sol (base): 68~69 Acknowledged

Description

Two separate amounts, feeInfo.ownFee and feeInfo.remainingAmount , are both transferred to the same _to address,

which may indicate either redundant or unintended logic if _to is not meant to receive both values. If _to is expected to

be the actual recipient of the remaining amount only, and ownFee was meant for another stakeholder, such as the NFT

owner, sending both to _to could result in overpayment.

Recommendation

We recommend clarifying or fixing the logic to ensure that feeInfo.ownFee and feeInfo.remainingAmount are sent to the

correct intended recipients and not redundantly to the same address unless explicitly required by the business logic.

Alleviation

[82.com, 04/23/2025]: We acknowledge the observation regarding ambiguous ERC20 transfers. The current implementation

remains unchanged as the royalty distribution mechanism is still under active development. We will implement necessary

adjustments once the final royalty framework is formally established.

COI-13 82.COM

COI-14 INSUFFICIENT SAFEGUARDS ALLOW ARBITRARY CALLS
DESPITE SIGNATURE VALIDATION

Category Severity Location Status

Logical Issue Medium modules/TokenWithdrawModule.sol (base): 27~28, 55 Acknowledged

Description

Despite requiring signature validation through checkSignatures() , both tokenTransfer() and nftTransfer() allow

arbitrary calls to external contracts using the Safe's execTransactionFromModule() , which can be abused by a malicious

Safe configuration where the internal logic of checkSignatures() or the Safe itself is compromised or intentionally

permissive. Since the contract trusts the Safe's internal permission system without enforcing its own validation on target

addresses or expected method selectors, an attacker could craft a Safe instance or manipulate its module setup to execute

unintended transactions, leading to unauthorized token movements or interactions with malicious contracts.

Recommendation

We recommend enforcing strict validation on target contract addresses and expected function signatures within

tokenTransfer() and nftTransfer() to prevent abuse through malicious or misconfigured Safe instances, even if

signatures appear valid.

Alleviation

[82.com, 04/23/2025]: Issue acknowledged. I will fix the issue in the future, which will not be included in this audit

engagement.

COI-14 82.COM

COI-15 SELF-ADMINISTERED ROLE ALLOWS FOR COMPLETE
ROLE TAKEOVER

Category Severity Location Status

Design

Issue
Minor

domainNft/DomainNFTLogic.sol (base): 36; setting/SettingManager

Logic.sol (base): 52
Acknowledged

Description

The current contract implements AccessControl Mechanism.

In the setup, the privileged role is assigned as its own admin role, which creates a significant security risk. This setup

allows any account with the privileged role to have administrative control over itself, including the ability to revoke the

role from other accounts.

 _setRoleAdmin(PRIVILEGED_ROLE, PRIVILEGED_ROLE);

If a malicious actor gains the privileged role , they can remove this role from all other accounts, effectively taking

complete control.

Recommendation

To mitigate this issue, assign a different, higher-level administrative role to PRIVILEGED_ROLE . This higher-level role should

have the authority to manage the PRIVILEGED_ROLE assignments, thus preventing any single account with the

PRIVILEGED_ROLE from having unchecked control.

Alleviation

[82.com, 04/23/2025]: After careful evaluation, we recognize the security implications of self-administered roles. While we

maintain the current implementation for operational continuity, this finding has been documented as a potential optimization

candidate pending further internal review and governance discussions.

COI-15 82.COM

COI-16 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

domainNft/DomainNFTLogic.sol (base): 40; setting/SettingManagerL

ogic.sol (base): 60; trading/NFTOfferMarketLogic.sol (base): 34, 37
Acknowledged

Description

The cited address input is missing a check that it is not address(0) .

Recommendation

We recommend adding a check the passed-in address is not address(0) to prevent unexpected errors.

Alleviation

[82.com, 04/23/2025]: As a security best practice, we acknowledge the importance of zero-address validation for critical

input parameters. This issue will be prioritized in our upcoming optimization cycle to enhance contract robustness and

prevent unintended behavior.

COI-16 82.COM

COI-17 INCORRECT SETUP OF EIP712 DOMAIN SEPARATOR

Category Severity Location Status

Design Issue Minor safe/Safe.sol (base): 154 Acknowledged

Description

According to the EIP712 standard, the hash of the EIP712Domain separator should be:

bytes32 private constant _TYPE_HASH =

 keccak256("EIP712Domain(string name,string version,uint256 chainId,address

verifyingContract)");

However, the current setup is incorrect, which is incompatible with EIP712.

Recommendation

To mitigate this issue, it is recommended to follow the EIP712 standard.

Alleviation

[82.com, 04/23/2025]: Regarding COI-17 (EIP712 Domain Separator), the current implementation originates from the

inherited Safe contract framework. To ensure the stability of existing signature verification, we will maintain the current

implementation and address this during future foundational contract upgrades, while enhancing signature monitoring

mechanisms in the interim.

COI-17 82.COM

COI-18 _setRoleAdmin TO DEFAULT_ADMIN_ROLE IS REDUNDANT

Category Severity Location Status

Logical Issue Minor setting/SettingManagerLogic.sol (base): 52 Resolved

Description

The specific role is assigned with DEFAULT_ADMIN_ROLE as the role admin. However, the assignment here is redundant, as

DEFAULT_ADMIN_ROLE will be the role admin for any role by default.

Recommendation

To mitigate this issue, it is recommended to remove the redundant the assignment.

Alleviation

[82.com, 04/23/2025]: egarding COI-18 (Redundant Role Assignment), technical review confirmed the explicit

DEFAULT_ADMIN_ROLE assignment was redundant. We've removed this redundant code in GitHub commit c5ad4d9.

COI-18 82.COM

https://github.com/octopus-net/octopus-contract/commit/c5ad4d989f649b7faa0c4fad7243b61937ff43aa

COI-19 POTENTIAL REENTRANCY ATTACK (OUT-OF-ORDER
EVENTS)

Category Severity Location Status

Concurrency Minor

modules/TokenWithdrawModule.sol (base): 22~42, 43~47, 48~59;

safe/Safe.sol (base): 55~88, 93; trading/NFTOfferMarketLogic.sol

(base): 45, 50, 197~206, 207~216; transfer/TransferAgentLogic.sol

(base): 55~59, 60~64

Acknowledged

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is considered minor because the reentrancy only causes out-of-order events.

External call(s)

36 _executeTokenTransfer(_tokenAddress, _safeAddress, _beneficiary, _amount

);

This function call executes the following external call(s).

In TokenWithdrawModuleV2._executeTokenTransfer ,

require(bool,string)

(SafeV2(address(_safeAddress)).execTransactionFromModule(_tokenAddress,0,data,Enum.Operati

on.Call),Could not execute token transfer)

40 _executeTokenTransfer(_tokenAddress,_safeAddress,feeReceiver,

_feeAmount);

This function call executes the following external call(s).

In TokenWithdrawModuleV2._executeTokenTransfer ,

require(bool,string)

(SafeV2(address(_safeAddress)).execTransactionFromModule(_tokenAddress,0,data,Enum.Operati

on.Call),Could not execute token transfer)

COI-19 82.COM

Events emitted after the call(s)

46 emit TokenTransferred(_tokenAddress,_safeAddress,_recipient,_amount);

Executed via the following function call(s):

_executeTokenTransfer(_tokenAddress,_safeAddress,feeReceiver,_feeAmount)

External call(s)

57 require(SafeV2(payable(_safeAddress)).execTransactionFromModule(

_tokenAddress,0,data,Enum.Operation.Call),"Could not execute NFT transfer");

Events emitted after the call(s)

58 emit NFTTransferred(_tokenAddress,_safeAddress,_recipient,_tokenId);

External call(s)

67 Guard(guard).checkTransaction(to, value, data, operation,

 safeTxGas, baseGas, gasPrice, gasToken, refundReceiver, signatures, msg.sender);

78 payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken,

 refundReceiver);

This function call executes the following external call(s).

In SafeV2.handlePayment ,

require(bool,string)(receiver.send(payment),GS011)

Events emitted after the call(s)

81 else emit ExecutionFailure(txHash, payment);

80 if (success) emit ExecutionSuccess(txHash, payment);

External call(s)

COI-19 82.COM

45 require(SafeV2(payable(_safeAddress)).execTransactionFromModule(

_tokenAddress,0,data,Enum.Operation.Call),"Could not execute token transfer");

Events emitted after the call(s)

46 emit TokenTransferred(_tokenAddress,_safeAddress,_recipient,_amount);

External call(s)

57 erc20.safeTransferFrom(_from, _to, _amount);

Events emitted after the call(s)

58 emit ERC20Transferred(_exchange, _from, _to, _amount);

External call(s)

62 nft.safeTransferFrom(_from, _to, _nftTokenId);

Events emitted after the call(s)

63 emit ERC721Transferred(_nftAddress, _from, _to, _nftTokenId);

External call(s)

202 _transferERC20FromSupportingFee(_erc20Token, order.price, msg.sender,

 _promisee, _erc721Token, _nftTokenId);

This function call executes the following external call(s).

In MultiTokenManager._transferERC20From ,

transferAgent.transferERC20(_erc20Token,_from,_to,_amount)

203 _transferERC721From(_erc721Token, _nftTokenId, _promisee, msg.sender);

This function call executes the following external call(s).

In MultiTokenManager._transferERC721From ,

COI-19 82.COM

transferAgent.transferERC721(_erc721Token,_nftTokenId,_from,_to)

Events emitted after the call(s)

205 emit OrderAccepted(orderHash, _orderId, OrderType.Sell, _promisee, msg.

sender, _erc721Token, _nftTokenId, _erc20Token, order.price);

External call(s)

212 _transferERC721From(_erc721Token, _nftTokenId, msg.sender, _promisee);

This function call executes the following external call(s).

In MultiTokenManager._transferERC721From ,

transferAgent.transferERC721(_erc721Token,_nftTokenId,_from,_to)

213 _transferERC20FromSupportingFee(_erc20Token, order.price, _promisee,

 msg.sender, _erc721Token, _nftTokenId);

This function call executes the following external call(s).

In MultiTokenManager._transferERC20From ,

transferAgent.transferERC20(_erc20Token,_from,_to,_amount)

Events emitted after the call(s)

215 emit OrderAccepted(orderHash, _orderId, OrderType.Buy, _promisee, msg.

sender, _erc721Token, _nftTokenId, _erc20Token, order.price);

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[82.com, 04/23/2025]: Regarding COI-19 (Potential Reentrancy Risk), we have identified optimization opportunities in event

emission ordering. The specific adjustments will be finalized and implemented in upcoming development cycles.

COI-19 82.COM

https://docs.soliditylang.org/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

COI-20 _nextTokenId REFLECTS THE CURRENT TOKEN ID

Category Severity Location Status

Logical Issue Minor domainNft/DomainNFTLogic.sol (base): 60~61 Resolved

Description

The DomainNFTLogic.mint() function uses pre-incrementation when assigning a new token ID:

59 uint256 tokenId = ++_nextTokenId;

60 _safeMint(to, tokenId);

As a result, tokenId is assigned the incremented value of _nextTokenId which then holds the value of the ID of the next

token to be minted.

Recommendation

We recommend switching to post-incrementation:

uint256 tokenId = _nextTokenId++;

This ensures _nextTokenId truly represents the next available token ID.

Alleviation

[82.com, 04/25/2025]: Regarding COI-20 (Token ID Counting Logic), we identified a discrepancy between _nextTokenId

naming and its actual behavior. The optimized solution now: 1) Initializes value at 1; 2) Uses post-increment (tokenId =

_nextTokenId++) for precise semantics. This ensures full consistency between variable naming and logic, implemented in

GitHub commit 97f0da6.

COI-20 82.COM

https://github.com/octopus-net/octopus-contract/commit/97f0da65126376f2ee68ef9ae0bafd9b4a557844

COI-21 MISSING INPUT VALIDATION IN viewRoleMember() LEADS

TO SILENT OR UNEXPECTED FAILURES

Category Severity Location Status

Logical

Issue
Minor

domainNft/DomainNFTLogic.sol (base): 81~87; setting/SettingMa

nagerLogic.sol (base): 122~127; transfer/TransferAgentLogic.sol

(base): 48~53

Partially Resolved

Description

The DomainNFTLogic.viewRoleMember() function is intended to extract from a role member list the addresses list up to

size entries starting at cursor .

However, there are two edge cases:

cursor == memberCount

Returns an empty array with no indication that the request was out‑of‑range.

size == 0

Also yields an empty array without errors.

Similar silent failures can also take place in:

SettingManagerLogic.viewWhitelistedSafes()

TransferAgentLogic.viewWhitelistedExchange()

Recommendation

We recommend adding explicit input checks at the start of the function to guard against out‑of‑bounds or zero‑length

requests.

Alleviation

[82.com, 04/23/2025]: Regarding COI-21 (Missing Input Validation), we've implemented boundary checks in

viewRoleMember() including: 1) Explicit error for out-of-range cursor 2) Exception for zero-size requests. This fix prevents

silent failures, with implementation at GitHub commit 7921d6d.

[CertiK, 04/25/2025]: The team heeded the advice and partially resolved the issue in commit

7921d6db7d0afe84c3dde6871389b68f8b2464a7.

Similar issues still exist in:

COI-21 82.COM

https://github.com/octopus-net/octopus-contract/commit/7921d6db7d0afe84c3dde6871389b68f8b2464a7
https://github.com/octopus-net/octopus-contract/commit/7921d6db7d0afe84c3dde6871389b68f8b2464a7

SettingManagerLogic.viewWhitelistedSafes()

TransferAgentLogic.viewWhitelistedExchange()

[CertiK, 04/28/2025]: The team heeded the advice and fully resolved the issue in commit

8b42c54fce2c7bb494e4c6e57842563e5e784de7.

COI-21 82.COM

https://github.com/octopus-net/octopus-contract/commit/8b42c54fce2c7bb494e4c6e57842563e5e784de7

COI-23 UNSAFE UNLIMITED TOKEN APPROVALS AND OPERATOR
PERMISSIONS GRANTED TO TRANSFER AGENT

Category Severity Location Status

Design Issue Minor safe/SafeProxy.sol (base): 33~42 Acknowledged

Description

Blindly granting unlimited token approvals and universal operator permissions introduces significant security risks, as it gives

the transferAgent full control over all approved ERC20 and ERC721 tokens without constraints or expiration. If the

transferAgent becomes compromised or behaves maliciously, it could drain all user tokens approved through this

function. Additionally, using type(uint256).max for ERC20 approvals is a known anti-pattern, as it lacks fine-grained

control and cannot be easily revoked mid-way without an extra approval transaction, increasing vulnerability to front-running

or misuse.

Recommendation

We recommend setting precise approval amounts for ERC20 tokens and granting ERC721 operator permissions only when

necessary, preferably with revocation mechanisms or time-limited scopes to minimize security risks.

Alleviation

[82.com, 04/23/2025]: Regarding COI-23 (Unlimited Approval Risk), the current full-amount approval is a UX-oriented design

choice to minimize repeated approvals in high-frequency trading scenarios. We've flagged this for optimization and will

evaluate precise-amount approval implementation in the next version, while mitigating potential risks through real-time

monitoring and user warnings.

COI-23 82.COM

COI-24 UNBOUNDED TOKEN WHITELIST MAY LEAD TO GAS
EXHAUSTION

Category Severity Location Status

Denial of

Service
Minor

safe/SafeProxy.sol (base): 31~42; setting/SettingManagerLogic.s

ol (base): 81~90, 98~109
Acknowledged

Description

Allowing unlimited tokens to be added to the _whitelistedTokens set without any cap can lead to a situation where the

viewWhitelistedTokensByType() function consumes excessive gas due to its iteration over all entries in the set. Since

viewWhitelistedTokensByType() is a public view function that reads the entire _whitelistedTokens collection and filters

by type, its gas usage grows linearly with the number of tokens added. In extreme cases, this may cause the function to

exceed the block gas limit, making it unusable and potentially breaking interfaces or integrations that rely on it.

Recommendation

We recommend enforcing a maximum limit on the number of whitelisted tokens or implementing pagination in the

viewWhitelistedTokensByType() function to prevent potential gas exhaustion.

Alleviation

[82.com, 04/23/2025]: Regarding COI-24 (Unbounded Whitelist Gas Risk), we have strictly limited the whitelist to 10 tokens,

well below the risk threshold. A hard-coded limit will be considered in future upgrades, while the current design remains

unchanged.

COI-24 82.COM

COI-25 STALE TOKEN TYPE MAPPING REMAINS AFTER TOKEN
REMOVAL

Category Severity Location Status

Logical Issue Minor setting/SettingManagerLogic.sol (base): 91~95 Resolved

Description

When a token is removed from the _whitelistedTokens set using removeToken() , its corresponding entry in the

_tokenTypes mapping is not deleted, which leads to stale data remaining in storage. This leftover mapping can cause

inconsistencies if other parts of the contract rely on _tokenTypes for logic, potentially resulting in incorrect token type

interpretation or unauthorized behavior. Additionally, it introduces unnecessary storage costs and may increase the

complexity of future upgrades or audits.

Recommendation

We recommend explicitly deleting the _tokenTypes[token] entry when a token is removed from the whitelist to ensure

storage consistency and prevent stale data from affecting contract logic.

Alleviation

[82.com, 04/23/2025]: Regarding COI-25 (Stale Data After Token Removal), we've added _tokenTypes[token] cleanup logic

in removeToken() function to ensure token type data is deleted when a token is removed from _whitelistedTokens.See

implementation in GitHub commit 8f77b9c.

COI-25 82.COM

https://github.com/octopus-net/octopus-contract/commit/8f77b9cf7a96eab32973c234e98935438e0e762c

COI-26 UNINITIALIZED CRITICAL CONFIGURATION VARIABLES
MAY LEAD TO UNDEFINED BEHAVIOR

Category Severity Location Status

Logical

Issue
Minor

setting/SettingManagerLogic.sol (base): 49~61, 133~140; trading/NFTOff

erMarketLogic.sol (base): 33~38
Resolved

Description

Critical configuration variables such as:

_transactionFeeRate ,

_withdrawalFeeReceiver ,

transferAgentAddress ,

settingManagerAddress

are not initialized within the initialize() function, which may lead to undefined or invalid behavior if these variables are

accessed before being explicitly set through their respective setter functions. This creates a dependency on external calls

post-deployment for proper configuration and increases the risk of misconfiguration or unintended contract behavior,

especially if fee-related operations or contract integrations rely on these values being present and valid from the start.

Recommendation

We recommend initializing _transactionFeeRate , _withdrawalFeeReceiver , transferAgentAddress , and

settingManagerAddress within the initialize function or enforcing non-zero checks before their usage to ensure the contract

operates with valid configurations from the beginning.

Alleviation

[82.com, 04/23/2025]: Regarding COI-26 (Uninitialized Variables), we have added default value assignments for all critical

configuration variables (including transactionFeeRate, withdrawalFeeReceiver, etc.) in the contract initialization function to

ensure safe state upon deployment. This fix prevents unexpected behaviors caused by uninitialized variables, with

implementation details in GitHub commit 7f828cd .

COI-26 82.COM

https://github.com/octopus-net/octopus-contract/commit/7f828cd4d77a5303c611f8c2d6d6b399662d5dff

COI-27 REDUNDANT CHECK

Category Severity Location Status

Volatile

Code
Minor

setting/SettingManagerLogic.sol (base): 120~121; trading/NFTOfferMark

etLogic.sol (base): 95~96
Resolved

Description

In NFTOfferMarketLogic._validateExternalConfig() , the following check is made

95 if (!settings.isSafeWhitelisted(settings.getTransactionFeeReceiver()))

return "FeeReceiverNotWhitelisted";

However, in the current SettingManagerLogic contract implementation, isSafeWhitelisted() is defined as follows

120 function isSafeWhitelisted(address safe) external view returns (bool) {

return _whitelistedSafes.contains(safe) || safe == _transactionFeeReceiver; }

Therefore, by providing _transactionFeeReceiver as the input parameter, the

NFTOfferMarketLogic._validateExternalConfig() check will always pass.

Recommendation

We recommend modifying the code to ensure the check is effective.

Alleviation

[82.com, 04/23/2025]: Regarding COI-27 (Redundant Check), we confirmed that this validation became redundant during

code iterations. To optimize contract efficiency, we removed the check in GitHub Commit 22885b1 and added test coverage

to ensure functional integrity.

COI-27 82.COM

https://github.com/octopus-net/octopus-contract/commit/22885b1687ca2f8237dfeba12a614bf675f2f907

COI-28 POTENTIAL CROSSFUNCTION REENTRANCY IN
NFTOfferMarketLogic

Category Severity Location Status

Concurrency Minor
trading/NFTOfferMarketLogic.sol (base): 248~249, 251~252, 254~255, 2

59~260
Resolved

Description

In the contract NFTOfferMarketLogic , the following functions trigger the transfer of ERC721:

acceptSellOrder()

acceptBuyOrder()

batchAcceptSellOrder()

batchAcceptBuyOrder()

which all share a pattern similar to:

 _transferERC721From(_erc721Token, _nftTokenId, msg.sender, _promisee);

 _transferERC20FromSupportingFee(_erc20Token, order.price, _promisee,

msg.sender, _erc721Token, _nftTokenId);

 delete makerOrderMapping[orderHash];

 emit OrderAccepted(orderHash, _orderId, OrderType.Buy, _promisee,

msg.sender, _erc721Token, _nftTokenId, _erc20Token, order.price);

ERC‑721 safeTransferFrom invokes the recipient’s onERC721Received() hook when the receiver is a contract. A

malicious hook implementation can reenter back into the contract before its state is fully updated.

Because the functions mentioned above are protected by a nonReentrant modifier, calling one of these functions when

reentering the contract won't be possible; however, calling the other unprotected functions would still be possible.

This can create confusion when monitoring transactions, as out-of-order events could be produced.

Moreover, if other contracts in the protocol rely on makerOrderMapping for safety checks, this could lead to read-only

reentrancies as the ERC721 transfer before the mapping deletion could allow triggering external functions with out of date

information.

Scenario

Post Buy Order cancel

1. Alice has created a buy order for Bob's NFT

COI-28 82.COM

2. Alice's contract contains a malicious implementation of the ERC721 onERC721Received() function, calling back

cancelBuyOrder() for the exact same order

3. Bob triggers the acceptBuyOrder() to sell his NFT

4. Before makerOrderMapping[orderHash] is deleted and OrderAccepted event is emitted, cancelBuyOrder() will

be triggered, deleting the makerOrderMapping[orderHash] and emitting an OrderCancelled event

5. As a result, the sell executes as expected, but the mapping makerOrderMapping[orderHash] is deleted twice, and

an event OrderCancelled is emitted before an OrderAccepted event for the exact same order.

Multiple similar scenarios are possible, causing issues to monitor transactions, and potentially causing more severe

damages if off-chain code relies on events to trigger other transactions.

Read-only reentrancy

Using the ERC721 onERC721Received() , the malicious buyer calls an external contract relying on NFTOfferMarketLogic

public mapping makerOrderMapping[orderHash] to check if a specific order exists. Since this call takes place before

deleting makerOrderMapping[orderHash] for the specific order, the external contract will work on outdated invalid data.

Recommendation

We recommend applying the check-effect interaction pattern by deleting the mapping and emitting the event before

triggering ERC721 transfer.

Alleviation

[82.com, 04/25/2025]: Thanks for catching that. We've applied CEI pattern consistently - state updates now precede external

calls in all functions. Fixed in commit 6a6e5bbc.

COI-28 82.COM

https://github.com/octopus-net/octopus-contract/commit/6a6e5bbc6a147c21e585dfaed8301cc2fdbeb3f4

COI-36 INITIALIZE STATE VARIABLE IN CONSTRUCTOR OR
DECLARATION IN UPGRADEABLE CONTRACT

Category Severity Location Status

Logical Issue Minor domainNft/DomainNFTLogic.sol (Update1): 15 Resolved

Description

In Solidity, initialization logic inside a constructor or global variable declaration in a logic contract is not reflected in the proxy

contract's state when using the proxy pattern for upgradeable contracts. This is because the initialization code in the

constructor or the global variable declaration is not part of the contract's runtime bytecode, and the proxy contract does not

execute it.

Recommendation

We recommend moving the initialization within the global state variable declaration to an initialize function to avoid

unexpected behavior and confusion.

Alleviation

[82.com, 04/29/2025]: Thanks for catching this I've renamed '_nextTokenId' to '_currentTokenId' and switched to pre-

increment '++i' to ensure IDs start from 1. See the changes here: 2257171.

COI-36 82.COM

https://github.com/octopus-net/octopus-contract/commit/22571719e7b3ddfb92a9367af1bdb72352e7e4c4

COI-29 INCONSISTENT SOLIDITY VERSIONS

Category Severity Location Status

Language

Version
Informational

domainNft/DomainNFTProxy.sol (base): 2; interfaces/IDomain

NFT.sol (base): 2; interfaces/ISettingManager.sol (base): 2; in

terfaces/ITransferAgent.sol (base): 2; modules/TokenWithdra

wModule.sol (base): 2; safe/IProxyCreationCallback.sol (bas

e): 2; safe/Safe.sol (base): 2; safe/SafeProxy.sol (base): 2; sa

fe/SafeProxyFactory.sol (base): 2; setting/SettingManagerLog

ic.sol (base): 2; setting/SettingManagerProxy.sol (base): 2; tra

ding/NFTOfferMarketLogic.sol (base): 2; trading/NFTOfferMar

ketProxy.sol (base): 2; transfer/TransferAgentLogic.sol (bas

e): 2; transfer/TransferAgentProxy.sol (base): 2

Acknowledged

Description

The codebase contains multiple Solidity versions, which can lead to unexpected behavior, potential vulnerabilities, difficulties

in maintaining the code, and inconsistencies in the execution of the smart contract. Using different versions may also result in

increased complexity during code auditing, as different security features and bug fixes are present in different versions of the

compiler.

Versions used: ^0.8.20 , >=0.7.0<0.9.0 , ^0.8.22 , >=0.8.0<0.9.0

2 pragma solidity ^0.8.20;

^0.8.20 is used in modules/TokenWithdrawModule.sol file.

2 pragma solidity ^0.8.20;

2 pragma solidity >=0.7.0 <0.9.0;

>=0.7.0<0.9.0 is used in node_modules/@safe-global/safe-contracts/contracts/interfaces/ISignatureValidator.sol file.

2 pragma solidity >=0.7.0 <0.9.0;

2 pragma solidity ^0.8.22;

^0.8.22 is used in interfaces/ITransferAgent.sol file.

2 pragma solidity ^0.8.22;

COI-29 82.COM

2 pragma solidity >=0.8.0 <0.9.0;

>=0.8.0<0.9.0 is used in safe/Safe.sol file.

2 pragma solidity >=0.8.0 <0.9.0;

Versions used: ^0.8.20 , ^0.8.22

5 pragma solidity ^0.8.0;

^0.8.20 is used in node_modules/@openzeppelin/contracts/utils/structs/EnumerableSet.sol file.

5 pragma solidity ^0.8.0;

2 pragma solidity ^0.8.22;

^0.8.22 is used in transfer/TransferAgentLogic.sol file.

2 pragma solidity ^0.8.22;

Versions used: ^0.8.20 , ^0.8.22

^0.8.20 is used in node_modules/@openzeppelin/contracts/utils/StorageSlot.sol file.

2 pragma solidity ^0.8.22;

^0.8.22 is used in transfer/TransferAgentProxy.sol file.

2 pragma solidity ^0.8.22;

Versions used: ^0.8.20 , ^0.8.22

^0.8.20 is used in node_modules/@openzeppelin/contracts/utils/StorageSlot.sol file.

2 pragma solidity ^0.8.22;

^0.8.22 is used in trading/NFTOfferMarketLogic.sol file.

2 pragma solidity ^0.8.22;

Versions used: ^0.8.20 , ^0.8.22

COI-29 82.COM

^0.8.20 is used in node_modules/@openzeppelin/contracts/utils/StorageSlot.sol file.

2 pragma solidity ^0.8.22;

^0.8.22 is used in trading/NFTOfferMarketProxy.sol file.

2 pragma solidity ^0.8.22;

Versions used: ^0.8.0 , ^0.8.2 , ^0.8.1 , ^0.8.22

4 pragma solidity ^0.8.0;

^0.8.0 is used in node_modules/@openzeppelin/contracts/utils/StorageSlot.sol file.

4 pragma solidity ^0.8.0;

4 pragma solidity ^0.8.2;

^0.8.2 is used in node_modules/@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol file.

4 pragma solidity ^0.8.2;

4 pragma solidity ^0.8.1;

^0.8.1 is used in node_modules/@openzeppelin/contracts/utils/Address.sol file.

4 pragma solidity ^0.8.1;

2 pragma solidity ^0.8.22;

^0.8.22 is used in domainNft/DomainNFTProxy.sol file.

2 pragma solidity ^0.8.22;

Versions used: >=0.7.0<0.9.0 , ^0.8.22 , >=0.8.0<0.9.0

2 pragma solidity >=0.7.0 <0.9.0;

>=0.7.0<0.9.0 is used in node_modules/@safe-global/safe-contracts/contracts/interfaces/ISignatureValidator.sol file.

2 pragma solidity >=0.7.0 <0.9.0;

COI-29 82.COM

2 pragma solidity ^0.8.22;

^0.8.22 is used in interfaces/ITransferAgent.sol file.

2 pragma solidity ^0.8.22;

2 pragma solidity >=0.8.0 <0.9.0;

>=0.8.0<0.9.0 is used in safe/SafeProxy.sol file.

2 pragma solidity >=0.8.0 <0.9.0;

Versions used: >=0.7.0<0.9.0 , ^0.8.22 , >=0.8.0<0.9.0

2 pragma solidity >=0.7.0 <0.9.0;

>=0.7.0<0.9.0 is used in node_modules/@safe-global/safe-contracts/contracts/interfaces/ISignatureValidator.sol file.

2 pragma solidity >=0.7.0 <0.9.0;

2 pragma solidity ^0.8.22;

^0.8.22 is used in interfaces/ITransferAgent.sol file.

2 pragma solidity ^0.8.22;

2 pragma solidity >=0.8.0 <0.9.0;

>=0.8.0<0.9.0 is used in safe/SafeProxyFactory.sol file.

2 pragma solidity >=0.8.0 <0.9.0;

Versions used: ^0.8.0 , ^0.8.2 , ^0.8.1 , ^0.8.22

4 pragma solidity ^0.8.0;

^0.8.0 is used in node_modules/@openzeppelin/contracts/utils/StorageSlot.sol file.

4 pragma solidity ^0.8.0;

4 pragma solidity ^0.8.2;

COI-29 82.COM

^0.8.2 is used in node_modules/@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol file.

4 pragma solidity ^0.8.2;

4 pragma solidity ^0.8.1;

^0.8.1 is used in node_modules/@openzeppelin/contracts/utils/Address.sol file.

4 pragma solidity ^0.8.1;

2 pragma solidity ^0.8.22;

^0.8.22 is used in setting/SettingManagerProxy.sol file.

2 pragma solidity ^0.8.22;

Versions used: ^0.8.0 , ^0.8.2 , ^0.8.1 , ^0.8.22

5 pragma solidity ^0.8.0;

^0.8.0 is used in node_modules/@openzeppelin/contracts/utils/structs/EnumerableSet.sol file.

5 pragma solidity ^0.8.0;

4 pragma solidity ^0.8.2;

^0.8.2 is used in node_modules/@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol file.

4 pragma solidity ^0.8.2;

4 pragma solidity ^0.8.1;

^0.8.1 is used in node_modules/@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol file.

4 pragma solidity ^0.8.1;

2 pragma solidity ^0.8.22;

^0.8.22 is used in setting/SettingManagerLogic.sol file.

2 pragma solidity ^0.8.22;

COI-29 82.COM

Recommendation

It is recommended to standardize on a single, up-to-date Solidity version throughout the codebase to ensure consistent

behavior, benefit from the latest security features, and improve maintainability.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-29 82.COM

COI-30 POTENTIAL REENTRANCY ATTACK (IN CASE OF
UNLIMITED GAS)

Category Severity Location Status

Concurrency Informational safe/Safe.sol (base): 42~54, 55~88, 93 Acknowledged

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is only informational because it only involves transfer and send calls. Those functions may not protect from

reentrancies in case of gas price changes.

External call(s)

78 payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken,

 refundReceiver);

This function call executes the following external call(s).

In SafeV2.handlePayment ,

require(bool,string)(receiver.send(payment),GS011)

Events emitted after the call(s)

81 else emit ExecutionFailure(txHash, payment);

80 if (success) emit ExecutionSuccess(txHash, payment);

External call(s)

51 handlePayment(payment, 0, 1, paymentToken, paymentReceiver);

This function call executes the following external call(s).

In SafeV2.handlePayment ,

COI-30 82.COM

require(bool,string)(receiver.send(payment),GS011)

Events emitted after the call(s)

53 emit SafeSetup(msg.sender, _owners, _threshold, to, fallbackHandler,

address(settingManager), address(transferAgent));

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-30 82.COM

https://docs.soliditylang.org/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

COI-31 UNUSED STATE VARIABLE

Category Severity Location Status

Coding Issue Informational safe/Safe.sol (base): 19~163 Acknowledged

Description

Some state variables are not used in the codebase. This can lead to incomplete functionality or potential vulnerabilities if

these variables are expected to be utilized.

Variable _deprecatedDomainSeparator in SafeV2 is never used in SafeV2 .

30 bytes32 private _deprecatedDomainSeparator;

19 contract SafeV2 is Singleton,NativeCurrencyPaymentFallback,ModuleManager,

OwnerManager,SignatureDecoder,SecuredTokenTransfer,ISignatureValidatorConstants,

FallbackManager,StorageAccessible,GuardManager{

Recommendation

It is recommended to ensure that all necessary state variables are used, and remove redundant variables.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-31 82.COM

COI-32 LOCAL VARIABLE SHADOWING

Category Severity Location Status

Coding Style Informational trading/NFTOfferMarketLogic.sol (base): 114, 127, 141 Acknowledged

Description

A local variable is shadowing another component defined elsewhere. This means that when the contract accesses the

variable by its name, it will use the one defined locally, not the one defined in the other place. The use of the variable may

lead to unexpected results and unintended behavior.

141 try nft.ownerOf(_nftTokenId) returns (address owner) { if (owner !=

 _trade) return "NotOwner"; } catch { return "NotOwner"; }

Local variable owner in OrderManager._validateAccept shadows the function owner in OwnableUpgradeable .

114 try nft.ownerOf(_nftTokenId) returns (address owner) { if (owner !=

 _trade) return "NotOwner"; } catch { return "NotOwner"; }

Local variable owner in OrderManager._validateCreate shadows the function owner in OwnableUpgradeable .

127 try nft.ownerOf(_nftTokenId) returns (address owner) { if (owner !=

 _trade) return "NotOwner"; } catch { return "NotOwner"; }

Local variable owner in OrderManager._validateUpdate shadows the function owner in OwnableUpgradeable .

Recommendation

It is recommended to remove or rename the local variable that shadows another definition to prevent potential issues and

maintain the expected behavior of the smart contract.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-32 82.COM

COI-33 TOO MANY DIGITS

Category Severity Location Status

Magic Numbers Informational setting/SettingManagerLogic.sol (base): 171 Acknowledged

Description

Literals with many digits are difficult to read and review.

171 function _feeDenominator() internal pure virtual returns (uint96) { return

1000000; }

Recommendation

We recommend using scientific notation to improve readability.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-33 82.COM

COI-34 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

domainNft/DomainNFTLogic.sol (base): 47, 58; trading/NFT

OfferMarketLogic.sol (base): 33, 36
Acknowledged

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-34 82.COM

COI-35 INFORMATION ON UPGRADE HANDLING

Category Severity Location Status

Design Issue Informational Resolved

Description

Contracts in the Coin988 protocol are upgradeable. Please clarify whether the source code provided is for an upgrade of an

existing deployment or whether this is the implementation code for a proxy being deployed for the first time. This information

is needed in order to determine whether storage collisions during upgrades should be considered.

Recommendation

If the currently audited codebase is an upgrade to an existing deployment, we recommend providing the address for the

currently existing contract logic in order to assess the potential for storage collisions. Otherwise, please confirm this is the

contract logic to be used with the first deployment of the project.

Alleviation

[82.com, 04/22/2025]: Yes, all smart contracts are written on the premise of the first deployment.

COI-35 82.COM

OPTIMIZATIONS 82.COM

ID Title Category Severity Status

COI-01 Redundant Code Components
Volatile Code, Code

Optimization
Optimization Acknowledged

COI-02 Redundant burn() Override Code Optimization Optimization Acknowledged

COI-03
Unused Declarations Increase Contract

Size And Reduce Clarity
Code Optimization Optimization Acknowledged

COI-04
Redundant Length Checks Before

Looping Over Token Arrays
Gas Optimization Optimization Acknowledged

OPTIMIZATIONS 82.COM

https://acc.audit.certikpowered.info/project/a9748e30-142c-11f0-9b37-db002d0547ef/report/new?fid=1744783616043
https://acc.audit.certikpowered.info/project/a9748e30-142c-11f0-9b37-db002d0547ef/report/new?fid=1744827919628
https://acc.audit.certikpowered.info/project/a9748e30-142c-11f0-9b37-db002d0547ef/report/new?fid=1744984853469
https://acc.audit.certikpowered.info/project/a9748e30-142c-11f0-9b37-db002d0547ef/report/new?fid=1744990004554

COI-01 REDUNDANT CODE COMPONENTS

Category Severity Location Status

Volatile Code, Code

Optimization
Optimization

trading/NFTOfferMarketLogic.sol (base):

25
Acknowledged

Description

The NFTOfferMarketLogic.isWhiteList modifier is declared but never used.

Recommendation

We advise removing the redundant statement for production environments.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-01 82.COM

COI-02 REDUNDANT burn() OVERRIDE

Category Severity Location Status

Code Optimization Optimization domainNft/DomainNFTLogic.sol (base): 65~66 Acknowledged

Description

The DomainNFTLogic overrides the internal _update() to revert when a token is marked frozen:

94 function _update(address to, uint256 tokenId, address auth) internal

override(ERC721Upgradeable, ERC721EnumerableUpgradeable) returns (address) {

95 if (isFrozenTokenId[tokenId]) { revert ERROR_NFT_FROZEN(); }

96 return super._update(to, tokenId, auth);

97 }

It also provides a public burn(uint256) override that performs the same freeze check before calling super._update() :

65 function burn(uint256 _tokenId) public override {

66 if (isFrozenTokenId[_tokenId]) { revert ERROR_NFT_FROZEN(); }

67 super._update(address(0), _tokenId, _msgSender());

68 }

However, the inherited ERC721Burnable.burn() already calls _update(address(0), tokenId, _msgSender()) , which

dispatches to the custom _update override. Thus, the DomainNFTLogic.burn() is redundant and can be removed.

Recommendation

We recommend removing the redundant public burn(uint256) override.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-02 82.COM

COI-03 UNUSED DECLARATIONS INCREASE CONTRACT SIZE AND
REDUCE CLARITY

Category Severity Location Status

Code

Optimization
Optimization

domainNft/DomainNFTLogic.sol (base): 24, 25, 27; safe/S

afe.sol (base): 26, 30, 31; setting/SettingManagerLogic.sol

(base): 36; trading/NFTOfferMarketLogic.sol (base): 18, 22

0; transfer/TransferAgentLogic.sol (base): 17

Acknowledged

Description

Several declared errors, events, variables, and mappings are never used throughout the contract, resulting in unnecessary

code bloat that increases contract size, reduces readability, and may incur higher deployment costs without adding any

functional value.

Recommendation

We recommend removing all unused declarations to optimize contract size, improve readability, and reduce deployment

costs.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-03 82.COM

COI-04 REDUNDANT LENGTH CHECKS BEFORE LOOPING OVER
TOKEN ARRAYS

Category Severity Location Status

Gas Optimization Optimization safe/SafeProxy.sol (base): 33~42 Acknowledged

Description

The checks if (erc20Tokens.length > 0) and if (erc721Tokens.length > 0) are redundant because looping over

an empty array naturally results in zero iterations without causing errors or consuming unnecessary gas. These conditionals

add extra bytecode and complexity without providing functional benefits, as the for loops are already safe to execute even

when the arrays are empty.

Recommendation

We recommend removing the redundant length checks before the for loops, as empty arrays will not enter the loop and are

safe to iterate over directly.

Alleviation

[82.com, 05/06/2025]: Issue acknowledged. I won't make any changes for the current version.

COI-04 82.COM

FORMAL VERIFICATION 82.COM

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of contracts derived from AccessControl v4.4

We verified properties of the public interface of contracts that provide an AccessControl-v4.4 compatible API. This involves:

The hasRole function, which returns true if an account has been granted a specific role .

The getRoleAdmin function, which returns the admin role that controls a specific role .

The grantRole and revokeRole functions, which are used for granting a role to an account and revoking a

role from an account , respectively.

The renounceRole function, which allows the calling account to revoke a role from itself.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

accesscontrol-getroleadmin-succeed-always getRoleAdmin Function Always Succeeds

accesscontrol-hasrole-succeed-always hasRole Function Always Succeeds

accesscontrol-hasrole-change-state hasRole Function Does Not Change State

accesscontrol-renouncerole-succeed-role-renouncing renounceRole Successfully Renounces Role

accesscontrol-getroleadmin-change-state getRoleAdmin Function Does Not Change State

accesscontrol-grantrole-correct-role-granting grantRole Correctly Grants Role

accesscontrol-revokerole-correct-role-revoking revokeRole Correctly Revokes Role

accesscontrol-default-admin-role AccessControl Default Admin Role Invariance

accesscontrol-renouncerole-revert-not-sender
renounceRole Reverts When Caller Is Not the Confirmation

Address

FORMAL VERIFICATION 82.COM

Verification Results

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

False: The property is violated by the project.

Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

Inapplicable: The property does not apply to the project.

Detailed Results For Contract SettingManagerLogic (setting/SettingManagerLogic.sol) In Commit
5a43734e468fe7c70a6700c0531a8b79f705e4de

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always True

accesscontrol-hasrole-change-state True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-succeed-role-renouncing True

accesscontrol-renouncerole-revert-not-sender True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

FORMAL VERIFICATION 82.COM

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role Inconclusive

FORMAL VERIFICATION 82.COM

APPENDIX 82.COM

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Magic Numbers
Magic Number findings refer to numeric literals that are expressed in the code in their raw format, but

should instead be declared as constants to improve readability and maintainability.

Language

Version

Language Version findings indicate that the code uses certain compiler versions or language features

with known security issues.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Denial of

Service

Denial of Service findings indicate that an attacker may prevent the program from operating correctly

or responding to legitimate requests.

Concurrency
Concurrency findings are about issues that cause unexpected or unsafe interleaving of code

executions.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

APPENDIX 82.COM

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed AccessControl-v4.4 Properties

Properties related to function getRoleAdmin

accesscontrol-getroleadmin-change-state

APPENDIX 82.COM

The getRoleAdmin function must not change any state variables.

Specification:

assignable \nothing;

accesscontrol-getroleadmin-succeed-always

The getRoleAdmin function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function hasRole

accesscontrol-hasrole-change-state

The hasRole function must not change any state variables.

Specification:

assignable \nothing;

accesscontrol-hasrole-succeed-always

The hasRole function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function renounceRole

accesscontrol-renouncerole-revert-not-sender

The renounceRole function must revert if the caller is not the same as account .

Specification:

reverts_when account != msg.sender;

accesscontrol-renouncerole-succeed-role-renouncing

After execution, renounceRole must ensure the caller no longer has the renounced role.

APPENDIX 82.COM

Specification:

ensures !hasRole(role, account);

Properties related to function grantRole

accesscontrol-grantrole-correct-role-granting

After execution, grantRole must ensure the specified account has the granted role.

Specification:

ensures hasRole(role, account);

Properties related to function revokeRole

accesscontrol-revokerole-correct-role-revoking

After execution, revokeRole must ensure the specified account no longer has the revoked role.

Specification:

ensures !hasRole(role, account);

Properties related to function DEFAULT_ADMIN_ROLE

accesscontrol-default-admin-role

The default admin role must be invariant, ensuring consistent access control management.

Specification:

invariant DEFAULT_ADMIN_ROLE() == 0x00;

APPENDIX 82.COM

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER 82.COM

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER 82.COM

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

82.com Security Assessment CertiK Assessed on May 8th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

